Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma.

نویسندگان

  • Junkoh Yamamoto
  • Seiji Yamamoto
  • Toru Hirano
  • Shaoyi Li
  • Masayo Koide
  • Eiji Kohno
  • Mitsuo Okada
  • Chikanori Inenaga
  • Tsutomu Tokuyama
  • Naoki Yokota
  • Susumu Terakawa
  • Hiroki Namba
چکیده

PURPOSE Singlet oxygen ((1)O(2)) generated in photodynamic therapy (PDT) plays a very important role in killing tumor cells. Using a new near-IR photomultiplier tube system, we monitored the real-time production of (1)O(2) during PDT and thus investigated the relationship between the (1)O(2) production and photodynamic effects. EXPERIMENTAL DESIGN We did PDT in 9L gliosarcoma cells in vitro and in an experimental tumor model in vivo using 5-aminolevulinic acid and nanosecond-pulsed dye laser. During this time, we monitored (1)O(2) using this system. Moreover, based on the (1)O(2) monitoring, we set the different conditions of laser exposure and investigated whether they could affect the tumor cell death. RESULTS We could observe the temporal changes of (1)O(2) production during PDT in detail. At a low fluence rate the (1)O(2) signal gradually decreased with a low peak, whereas at a high fluence rate it decreased immediately with a high peak. Consequently, the cumulative (1)O(2) at a low fluence rate was higher, which thus induced a strong photodynamic effect. The proportion of apoptosis to necrosis might therefore be dependent on the peak and duration of the (1)O(2) signal. A low fluence rate tended to induce apoptotic change, whereas a high fluence rate tended to induce necrotic change. CONCLUSIONS The results of this study suggested that the monitoring of (1)O(2) enables us to predict the photodynamic effect, allowing us to select the optimal laser conditions for each patient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosensitization of coronene–purine hybrids for photodynamic therapy

Photosensitization properties of coronene-purine (Cor-P) hybrids for photodynamic therapy (PDT) have been investigated in this work. Eight hybrid Cor-P models have been designed by the additional of adenine (A) and guanine (G) nucleobase to Cor species. The evaluated absorption and emission energies indicated that the singular models are not good at all for PDT process whereas their hybrid mode...

متن کامل

In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy.

Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, including oncology, dermatology, and ophthalmology. Singlet oxygen is believed to play a key role in the efficacy of PDT, and on-line monitoring of singlet oxygen during PDT could provide a methodology to establish and customize the treatment dose clinically. This work is the first report of monitoring sin...

متن کامل

ROLE OF Mn(TPP)Cl IN THE EPOXIDATION WITH SINGLET OXYGEN

Mn(TPP)Cl catalyzes cooxidation of olefin in the singlet oxygenation of sulfid. Mn(TPP)Cl is able to transfer an oxygen atom from a peroxidic intermediate generated in singlet oxygenation of sulfide to a metal ion affording metal 0x0 species which is responsible for epoxidation. This system leads to allcenes epoxidation such as styrene and cyclooctene. Epoxidation of cyclohexene produces cy...

متن کامل

Evaluation of the Primary Response of Basal Cell Carcinoma to Aminolevulinic Acid Photodynamic Therapy

Background: Basal Cell Carcinoma (BCC) is the most common type of skin cancer in human beings. Photodynamic therapy (PDT) is a novel therapeutic method which may be regarded as a non-invasive useful alternative for traditional treatments of BCC. This study was designed with the aim of evaluating the primary response of BCC to PDT.Methods: This clinical trial was perform...

متن کامل

Visualization and Photodynamic Therapy in Malignant Glioma - An Overview and Perspectives

Photodynamic therapy (PDT) is a relatively new modality of cancer treatment. Actual ongoing clinical era started with the studies of Dougherty in the 1970s. PDT is based on the application of a so called photosensitizer (PS), which preferably enriches in the tumor tissue. The application of light at an appropriate wavelength excites the PS molecules from their ground state S0 to an electronical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 23  شماره 

صفحات  -

تاریخ انتشار 2006